
Introduction
Platform-as-a-service
Serverless functions

The architecture of a code review tool
Overview
Webhook
Scheduler
Adding functions

Serverless Laravel on AWS
The serverless framework
bref

Conclusions

Martin Joo - DevOps with Laravel

1 / 39

Introduction
The project files are located in the 8-serverless folder.

Not so long ago I launched Laracheck which is a code review tool. This is the way it works:

You install it on GitHub as an app

You open a PR

It reviews your code and leaves comments on the PR

So it's not a package that you can install in your repository but a stand-alone application with APIs and a
database.

There are ~15 checks it can run. To name a few:

N+1 query detection

Incorrect code dependency detection

Missing DB indices or foreign keys detections

etc

The whole application is "serverless." It runs on a PaaS (Platform-as-a-service) solution and uses serverless
functions and a managed database. In this essay, I'm going to show you how it's designed, why I choose
these solutions/technologies, and what are the advantages and disadvantages.

In the first part, I'm going to talk about PaaS and functions in general. Then I'll describe the exact design of
Laracheck.

Martin Joo - DevOps with Laravel

2 / 39

Platform-as-a-service
As you might guess, I'm using DigitalOcean to deploy this project. App Platform is their PaaS service. Other
providers also have similar solutions:

Amazon AWS App Runner

Google GCP App Engine

Microsoft Azure App Service

The main feature of these services is that you don't need to create servers at all. You don't even need to
write Dockerfiles. You just give them a GitHub repository, set up your environment variables, the scaling
options and capacity you need, and you're done with your infrastructure. It builds Docker images from your
code and then runs them on nodes managed by your providers. You can scale up and down the
components (such as API or frontend) and choose the node size.

In DigitalOcean these are the important terms:

App refers to your whole application

Component refers to one component such as API or worker

When you create a new app you need to choose the source of your first component:

Then you can select the source branch:

Martin Joo - DevOps with Laravel

3 / 39

Using the Source Directory option you can deploy from monorepos as well.

In this case, I have one repository which is an MVC app. Meaning, there's no separate API and SPA frontend
but only a Laravel app with Blade views. So far in the book, we only talked about APIs so now we can deploy
a more traditional SSR application as well.

Here's what I used to do:

I create two separate applications for the project

One of them is the staging environment and the source branch is develop

The other one is for production and the source is main

There's an option called Autodeploy . If you enable it the application gets updated every time when you
push new commits to the source repository. It's a great option because it makes development and
deployment pretty fast. However, this way you cannot have a pipeline. I mean, you could, but the app is
updated no matter what. Whenever you push a commit, it's going to be shipped.

On the next page, you can see that DigitalOcean detected that it's a PHP application and selected the right
build packs. This is how it's going to build a Docker image from the source.

Martin Joo - DevOps with Laravel

4 / 39

As you can see, App Platform detected that we have an MVC application so it added npm run build to the
build phase. When it builds a Docker image from the source it'll run npm run build so all the assets are
ready to use.

In the next section we can define the run command and some HTTP-related settings:

The basic run command serves the Laravel app via a web server. We can add a few extra commands to it:

This is the same thing we did with Kubernetes but we ran this command in the Dockerfile.

HTTP port is an internal port for the other components. With HTTP request routes you can handle routing.
So if you have an API you can write /api . This means that the component you're configuring will only
accepts requests coming to myapp.com/api . In this case, I need this component to serve the frontend as
well so I leave the default / route.

php artisan optimize

heroku-php-apache2 public/

Martin Joo - DevOps with Laravel

5 / 39

On the next page, you can set plan and scaling-related parameters:

Only pro plans can run multiple replicas from the same component.

On the next page, you can set environment variables. There are two kinds of variables:

Global is available in the whole app for every component.

Local variables can be only used by a specific component.

If you have project-related environment variables such as a ROLLBAR_TOKEN or AWS_ACCESS_KEY set them
as globals so you don't need to do it again as you add more components to the app.

Martin Joo - DevOps with Laravel

6 / 39

You can use an existing database server or you can create a new one exclusively for this application. I
created a new database in my existing server. Either way, you'll get your connection details that can be set
as env variables.

After that you're ready. The application is being built and then deployed. Your app can be accessed on an
URL such as https://your-app-pp5hs.ondigitalocean.app/

Of course, it won't work yet. We need to migrate the database first. To do so we need similar solutions to
Kubernetes or Swarm. We need a new component that runs after every deployment and executes php
artisan migrate . Fortunately, DigitalOcean provides such components. You can add a new one from the
same repository, but in the resource type options choose Job :

Martin Joo - DevOps with Laravel

7 / 39

A job has another option called When to run :

Martin Joo - DevOps with Laravel

8 / 39

Let's talk about the 3 options:

After every failed deploy. It's out of the question right now but it can be useful if you want to send
some notifications or do some other "clean-up" tasks after a deployment failed.

Before every deploy. It sounds better. But if you choose this and your deployment fails your database
will have the new schema but your code rolls back to the previous version. So your app is going to be in
an inconsistent state. Which can cause bugs.

After every successful deploy. That's the one we need. If the new version is rolled out successfully we
can run the migrations as the last step. Just as running php artisan migrate was one of the last
steps in the deploy script when we didn't even use Docker and containers.

And now the run command can be set to php artisan migrate --force :

So now we have a component that runs after every deploy and migrates the database. It runs only in one
replica which is key when migrating the DB. You can run multiple replicas from jobs but in this case, it
doesn't make sense.

Martin Joo - DevOps with Laravel

9 / 39

This is basically the same when we used a Job called migrate in Kubernetes:

And it's also very similar to the container called update in the Swarm stack:

If you now deploy the app it's going to be up and running. Under the Activity panel you can see the
deployment logs:

apiVersion: batch/v1

kind: Job

metadata:

 name: migrate

spec:

 backoffLimit: 2

 template:

 spec:

 restartPolicy: OnFailure

 containers:

 - name: migrate

 image: martinjoo/posts-api:$IMAGE_TAG

 command: ["sh", "-c", "php artisan migrate "#force"]

 envFrom:

 - configMapRef:

 name: posts

 - secretRef:

 name: posts

update:

 image: martinjoo/posts-api:${IMAGE_TAG}

 command: sh -c "/usr/src/wait-for-it.sh mysql:3306 -t 60 "$ /usr/src/wait-

for-it.sh redis:6379 -t 60 "$ /usr/src/update.sh"

 deploy:

 mode: replicated-job

Martin Joo - DevOps with Laravel

10 / 39

This is a screenshot from Hours which is a time-tracking app:

It took me 49 minutes and 51 seconds to deploy a Laravel app with a database. And I also wrote down the
whole process. And on top of that, the application runs in two replicas. I didn't create SSH keys, and didn't
run any Linux-related commands. 0 lines of shell scripts were written. But I could already send you a link
where my app is available. This is one of the advantages of PaaS services. Fast and easy deployments.

The disadvantage is that it costs you more money. You cannot just run your app, MySQL, and Redis on the
same server anymore. You need a dedicated (probably managed) MySQL server, a Redis server, and then
your app on App Platform. The migrate component also costs extra money. It's pretty cheap, but we have to
pay for migrating our own databases now. Which is ridiculous if you think about it.

One thing to note: App Platform doesn't autoscale at the time. You need to manually add replicas by clicking
the + button.

Martin Joo - DevOps with Laravel

11 / 39

Serverless functions
The idea behind serverless functions is that you deploy atomic parts of your application as independent
units. This unit is a function and it does only one thing and is usually exposed via HTTP. For example, you
can image a single CRUD application with four functions:

CreatePost

UpdatePost

DeletePost

ListPosts

ShowPost

Each connects to the same database and exposes the usual REST endpoints. But each of them contains only
the necessary code.

Let's see an example. First, you need to create a namespace on DigitalOcean which you can on the UI or in
your terminal:

Then you can init your project:

This creates a new folder my-functions and initializes the project:

A package is a logical unit of organization. For example, a CRUD application might look like this:

doctl serverless namespaces create "#label example-namespace "#region nyc1

doctl serverless init "#language php my-functions

Martin Joo - DevOps with Laravel

12 / 39

And inside the hello.php we have this:

Each of your functions has to follow some rules provided by DO:

There has to be a main function which is the entry point

It accepts an array that contains request parameters

It returns an array that has a body key with your response

You can deploy the function with:

Of course, you can version-control your functions, for now, it's just a quick introduction.

You can invoke it from the terminal:

Which returns:

- packages

 - posts

 - create

 - delete

 - comments

 - list

 - show

function main(array $args): array

{

 $name = $args['name'] "% 'stranger';

 return ['body' "& "Hello $name!"];

}

doctl serverless deploy my-function

doctl serverless functions invoke sample/hello

Martin Joo - DevOps with Laravel

13 / 39

And you can also pass arguments from your terminal:

The result:

If you now go the UI you can see the new namespace:

You can also edit and test your function directly from the browser:

{

 "body": "Hello stranger!"

}

doctl serverless functions invoke sample/hello -p name:Joe

{

 "body": "Hello Joe!"

}

Martin Joo - DevOps with Laravel

14 / 39

All of this is great for development purposes. If you go the function's settings you can set access & security-
related options:

Disable Web function if you don't want your function to be publicly available to anyone who knows the
link. REST API provides HTTP authentication by default. So we can invoke the function such as this:

Martin Joo - DevOps with Laravel

15 / 39

DigitalOcean hosts the function by default on an HTTP endpoint. As you can see, sample/hello became
part of the URL. There are two URL parameters:

result=true makes your function return only your data without meta information.

blocking=true means it's synchronous that returns the results immediately. If you don't provide this
parameter the response is going to be this:

You'll get only an activationId but not the actual results since now the function is async. You can query
the results later using this activation ID.

As you can see, a serverless function is literally just one function hosted on a cloud provider without an
actual server. Some advantages:

It scales exactly with your incoming traffic. If you have one user hitting the create post endpoint your
function runs in one instance. If there are 1000 users, then your function scales immediately. And then
it scales back after the spike in traffic.

You'll pay based on your usage. There are no fixed monthly costs.

But of course, it has disadvantages as well:

If you really want to refactor your application into many small functions it becomes over-complicated in
a pretty short time. Of course, you don't need to do that. In an upcoming chapter, we're going to
deploy an entire Laravel app as a function.

HTTP requests. Imagine your code runs for 600ms and then your it needs to send an HTTP request to a
3rd party API that takes 1200ms. 67% of your invocation time (and your money) is wasted. Your
function just waits for 1.2s for an API to complete. If you call functions from other functions the
situation gets even worse. Let's say function A takes 600ms to run and it calls function B which requires
400ms:

Function A took 1000ms

Function B took 400ms

The total execution time is 1400ms. There's an extra 40% you paid for waiting.

Imagine if function B calls the 3rd party for another 1200ms. Now function B takes 400+1200=1600, and
function A takes 600+(function B's time)=600+1600=2200ms. The total execution time is
2200+1600=3800ms. Now there's an additional 2800ms that you spent waiting for stuff. And remember, you
pay for these milliseconds.

curl -X POST "https:"'faas-nyc1-2ef2e6cc.doserverless.co/api/v1/namespaces/fn-

5994b047-2ae8-4791-acc1-8997f0db7cd5/actions/sample/hello?

blocking=true&result=true" \

 -H "Content-Type: application/json" \

 -H "Authorization: Basic <TOKEN>"

{"activationId":"a12f7ea35fea4a4eaf7ea35fea4a4ea5"}

Martin Joo - DevOps with Laravel

16 / 39

The architecture of a code review tool
Overview
Now that we know the basics of functions and PaaS solutions, let's design Laracheck. Here's the application
flow:

Users register on laracheck.io

They install the Laracheck app on their GitHub account

They open a new pull request

Laracheck will review the code, run its checks, and comment on the PR with the results

It needs GitHub integration. GitHub sends a POST request whenever a PR is opened or updated. So it seems
like we need at least two components:

app. This is where users can register and set up their accounts.

webhook. This is the component that gets triggered by GitHub if a PR is opened. It needs to expose an
API and process GitHub requests. It also needs to communicate with the app component. for example,
it checks if you have a subscription or you're on a free trial, etc. And finally, it runs the code checks.

As it turned there's a really great framework for writing GitHub apps called probot . It's a nodejs framework.
Which is great, because I love node (sorry but it's true).

So how to run the actual code checks? These checks require reading the actual source code (which was
pushed to GitHub), creating an abstract syntax tree (AST) and then check it then processing the tree and
looking for problems.

An AST is pretty freaking big. For example, this tiny class:

<?php

namespace App\Http\Controllers;

use App\Models\User;

use Illuminate\Support\Facades\Cache;

use Illuminate\Support\Facades\DB;

class PostController extends Controller

{

 public function index()

 {

 return PostResource"(collection(Post"(all());

 }

Martin Joo - DevOps with Laravel

17 / 39

Results in a 426 line long JSON object.

This controller:

Results in a 1400 line long JSON object and it's about 25 level deep. Imagine if someone opens a PR that
contains just 15 new files with 5000 lines of code. Or if it's a legacy project and someone changes 10000
lines, long classes.

The truth is I didn't know much about these trees and code analysis at the time. I wasn't sure how resource-
intensive these tasks are. I also wanted these things:

Push-to-deploy. I push to the main branch and production is updated.

Zero-downtime deployments.

1-click rollbacks. It's pretty important to me that if something goes wrong I can roll back with just one
click. This comes from the lack of knowledge of code analysis in general.

Dev/prod parity. Staging and production should be as similar as possible.

}

class UninstallAppController extends Controller

{

 public function ")invoke(int $installationId)

 {

 return DB"(transaction(function () use ($installationId) {

 /** @var User "*

 $user = User"(query()

 "+whereHas('installations', function ($query) use ($installationId) {

 $query"+where('installation_id', $installationId);

 })

 "+firstOrFail();

 $user"+uninstallApp($installationId);

 Cache"(forget("{$user"+username}-repositories");

 return response()"+noContent();

 });

 }

}

Martin Joo - DevOps with Laravel

18 / 39

Minimal server maintenance. Usually, I like playing around with servers and docker commands. But in
this case, I wanted to focus only on the actual product.

Easy to scale. I didn't know how much traffic to expect. I didn't know how resource-intensive is a code
review tool.

For these reasons, I decided to go with functions. Each check should be its own function. It's important to
note that the use case is literally perfect for an easy function setup. These code checks don't require
frameworks. They can be written in literally a few files. They require only a few dependencies. No external
API calls. No external storage.

This is what the architecture looks like:

GitHub sends a request to webhook

It gets some information from app that communicates with a MySQL database which contains user
information

It invokes the functions

Then sends a request back to GitHub to write a new comment to the PR

This way, I think we can get the most out of everything:

app serves the landing page and other user-facing services connected to a MySQL DB with Laravel and
Blade. This is the best use case for Laravel I think.

Martin Joo - DevOps with Laravel

19 / 39

webhook accepts HTTP requests and sends other async requests. This is literally the single best use
case for a nodejs application. As you might know, nodejs is a single-threaded, async runtime engine
with non-blocking I/O. It's one of the best architectures in my opinion, and it was designed for a use
case such as this one. Few CPU-intensive tasks, many async I/O operations.

And of course, functions can scale up and down on the fly as traffic grows. This eliminates all kinds of
uncertainty from the project.

Martin Joo - DevOps with Laravel

20 / 39

Webhook
Adding the webhook component to the application is almost no different from what the app was. The only
difference is the build and run commands:

Build command: npm run build

Run command: npm start

Other than that we only change the HTTP requests route. We want the Laravel app to be accessible on
myapp.com . Webhook needs another route:

The route is /webhook . This means if you have a route inside the application, for example, foo then it can
be accessed as myapp.com/webhook/foo . The webhook component is super lightweight so it doesn't need
to be scaled.

Martin Joo - DevOps with Laravel

21 / 39

Scheduler
The application also needs a scheduler. If you read through the whole book you already know that running a
scheduler always was a bit "trickier:"

Linux cronjob when we didn't have Docker images.

sleep 60 && php /usr/src/artisan schedule:run combined with a restart policy in docker-
compose.

php /usr/src/artisan schedule:run combined with the more "intelligent" restart policy of Docker
Swarm.

Using the CronJob resource of Kubernetes with the * * * * * schedule setting.

The App Platform is no exception. Adding a scheduler means adding the main repo as a worker
component:

A worker is a kind of component that runs in the background and is not exposed to the outside world. We
also need to change the run script to this:

If you want to add a queue worker you need to do the same but the script should be:

while true; do

 php artisan schedule:run ", true;

 sleep 60;

done

php artisan queue:work

Martin Joo - DevOps with Laravel

22 / 39

Adding functions
The last step is to add the functions. In DigitalOcean, we can attach functions directly to an app just like any
other component. So I created a GitHub repo for them. By the way, I also use a monorepo just as I did with
the sample project in the book:

This is the exact structure of the functions repo:

I have only one package called check and each function is a directory. Each function can have its own
dependencies. For example, this is the composer.json of the complex-data-object function:

Martin Joo - DevOps with Laravel

23 / 39

I also have nodejs services, for example n-plus-one :

This is another advantage of using functions. You can use multiple languages in your project easily. Why I
write a PHP code analysis tool in nodejs is another question. But the short answer is: believe it or not, I'm
much better at writing low-level code using nodejs because I was a node developer before I moved to
Laravel (sorry about that).

{

 "name": "laracheck/complex-data-object",

 "autoload": {

 "psr-4": {

 "": "./"

 }

 },

 "authors": [{

 "name": "Martin Joo",

 "email": "martin@laracheck.io"

 }],

 "require": {

 "php": "8.0.*",

 "phpmd/phpmd": "^2.13"

 }

}

Martin Joo - DevOps with Laravel

24 / 39

To call these functions we need to use HTTP requests from the webhook. To simplify things I created a class
called FunctionClient :

import axios from 'axios';

import Rollbar from 'rollbar';

import { config } from '"-/config/app.config';

export default class FunctionClient {

 rollbar: Rollbar;

 constructor(rollbar: Rollbar) {

 this.rollbar = rollbar;

 }

 async invoke(functionName: string, args: any): Promise<boolean> {

 try {

 const { data } = await axios.post(

 `${config.functions.host}/check/${functionName}?

blocking=true&result=true`, args,

 {

 headers: {

 'Authorization': `Basic ${config.functions.token}`,

 'Content-Type': 'application/json',

 },

 });

 return data.result;

 } catch (err: any) {

 this.rollbar.critical(`Function error: ${functionName}`, {

 function: functionName,

 args,

 error: err,

 });

 return true;

 }

 }

Martin Joo - DevOps with Laravel

25 / 39

You can add functions as a new component to your existing app. There's a function resource type:

It has another route so we can call the function such as this: myapp.com/functions/check/n-plus-one
where functions is the HTTP request route, check is the package name in the repository, and n-plus-
one is one of the functions.

}

Martin Joo - DevOps with Laravel

26 / 39

Serverless Laravel on AWS
Serverless functions seem exciting. But when I learned about them, I had only one question: "All right. So we
have these small files. Great. But how the hell can I combine Laravel with functions? Do I need to drop
Laravel and write bare-bone PHP code if I want a function? I won't do that."

Functions were originally designed to run really really small services. Such as we did in the previous chapter.
However, in a bigger application, it introduces lots of complexity. Just imagine a bigger Laravel project you
worked on. Let's say it has 100 API endpoints. Does it mean you need to refactor your monolith app to 50+
services backed by 50+ databases? Fortunately, no. It introduces problems you didn't even know existed
before. People won't do that but they do want to enjoy the convenience and "infinite-scale" of functions. As
it turned out we can easily deploy a whole Laravel app to a function.

In this chapter, we're going to deploy a whole Laravel app to AWS Lambda functions. We need to use two
libraries:

serverless

bref

serverless is a framework that helps you develop and deploy AWS lambda functions and other AWS
resources your application might need. It's a CLI tool built on top of the AWS CLI

Martin Joo - DevOps with Laravel

27 / 39

https://www.serverless.com/
https://github.com/brefphp/bref

The serverless framework
Before working with Laravel, let's just deploy a simple PHP file to AWS Lambda using the serverless
framework. It's a framework built on top of AWS Cloudformation. Cloudformation is an infrastructure-as-
code tool that lets you write the required AWS resources in a YAML or JSON file and then you can provision
them. Serverless is a simplified version of that that enabled us to use pretty simple YAML files to describe
the infra and then it uses Cloudformation under the hood to provision it.

To install it you need to run:

Before you start, create an IAM user on AWS or only for development purposes use your root user's keys:

Here's how you can create a new project:

The template option defines what files and config it should create initially. It's just a quick nodejs example
and we're going to use Laravel again:

It provides us with a sample js file:

npm install -g serverless

serverless config credentials "#provider aws "#key <key> "#secret <secret>

serverless create "#template aws-nodejs "#path serverless-example

Martin Joo - DevOps with Laravel

28 / 39

https://aws.amazon.com/cloudformation/

It also generates a serverless.yaml which is the main configuration for the serverless framework:

The most important thing about this file is the functions section. It defines a hello function with a
handler of handler.hello . it refers to the handler.js file and the hello function inside it.

And now we can deploy the function:

'use strict';

module.exports.hello = async (event) "& {

 return {

 statusCode: 200,

 body: JSON.stringify(

 {

 message: 'Hello world',

 input: event,

 },

 null,

 2

),

 };

};

service: serverless-example

frameworkVersion: "3"

provider:

 name: aws

 runtime: nodejs18.x

functions:

 hello:

 handler: handler.hello

serverless deploy

Martin Joo - DevOps with Laravel

29 / 39

After the function is deployed you should be able to see it on AWS console:

The first is the one I just deployed.

You can invoke the function using this command:

It should the return this json:

It's all great but not very useful yet. Users won't use the terminal to invoke our functions. And also, for just
deploying a simple function we don't really need a framework. AWS CLI can do that. DigitalOcean CLI can do
that. The power of serverless comes from when you want to combine things. When you want to use more
infrastructure than just a simple function.

So let's expose the function via an API Gateway. An AWS API gateway is pretty similar to:

An nginx reverse proxy we used with Docker

An ingress we used with Kubernetes

It exposes an API to the outside world and then forwards the requests to the right services. In this case, a
service is a Lambda function:

serverless invoke -f hello

{

 "statusCode": 200,

 "body": {"message": "Hello world", "input": {}}

}

Martin Joo - DevOps with Laravel

30 / 39

https://aws.amazon.com/api-gateway/

So serverless enables us to create an API gateway from the configuration. It's basically infrastructure-as-
code:

I added an events section to the function. This means:

There's an event that will invoke the Lambda

The event is an HTTP request to the /hello endpoint

If we now re-run serverless deploy we'll get a message such as this:

There's a URL for the function! Mine is this: https://pmwu46nrq8.execute-api.us-east-1.amazonaws.com/hell
o

functions:

 hello:

 handler: handler.hello

 events:

 - httpApi:

 path: /hello

 method: get

Martin Joo - DevOps with Laravel

31 / 39

https://pmwu46nrq8.execute-api.us-east-1.amazonaws.com/hello

In the AWS console you can see there's a new API gateway:

In the API gateway, there's a panel called Integration . Here you can see serverless successfully
attached the lambda to the HTTP endpoint:

These are just the basics of serverless . It can create so many things for your application:

Websockets

Schedulers

Event streams

CloudWatch logging

S3 storage

It's all configuration-driven which is a pretty good thing. Your repository contains the whole infrastructure
that your application needs.

If you run serverless deploy it creates a .serverless folder. Inside that folder, you can see your project
as a ZIP file, and the Cloudformation config generated by serverless:

Martin Joo - DevOps with Laravel

32 / 39

Martin Joo - DevOps with Laravel

33 / 39

bref
The reason I used nodejs in the previous chapter is that AWS Lambda doesn't have a PHP runtime. It can be
solved with 3rd party tools and AWS layers, however.

Bref is a composer package that provides php runtime on AWS, deployment tooling for PHP applications,
and excellent Laravel integrations. It works together with serverless .

If you just quickly want to test it with a single index.php you can do it in 2 minutes:

But let's try it with a brand new Laravel installation:

Then:

After it's installed, publish the serverless.yml config file:

Let's look at the generated config:

mkdir bref-test

cd bref-test

composer require bref/bref

vendor/bin/bref init

serverless deploy

composer create-project laravel/laravel serverless-laravel

composer require bref/bref

php artisan vendor:publish "#tag=serverless-config

service: laravel

provider:

 name: aws

 region: us-east-1

 environment:

 APP_ENV: production

Martin Joo - DevOps with Laravel

34 / 39

The provider is pretty similar to the earlier configs. It now contains an environment section. When you
deploy with bref your .env file is going to be deployed as well, but here you can override values.
package.patterns excludes files from the deployment.

The file defines two functions:

web is going to be the entire application. As you can see, it listens to every HTTP event. It means you
get the frontend by visiting / and accessing the API by hitting an URL such as /api/users . The
runtime php-81-fpm comes from the bref the plugin. This is what I talked about earlier. bref
provides PHP runtimes on AWS. It uses fpm just as we did in the book so everything should work the
same.

artisan is a function that runs on the php-81-console runtime which is a CLI PHP runtime and it
enables us to run artisan commands. It's similar to the official PHP CLI image on DockerHub.

There's a BrefServiceProvider that makes the application "lambda-compatible" by default, for example:

package:

 patterns:

 - '!node_modules/**'

 - '!public/storage'

 - '!resources/assets/**'

 - '!storage/**'

 - '!tests/**'

functions:

 web:

 handler: public/index.php

 runtime: php-81-fpm

 timeout: 28

 events:

 - httpApi: '*'

 artisan:

 handler: artisan

 runtime: php-81-console

 timeout: 720

plugins:

 - ./vendor/bref/bref

Martin Joo - DevOps with Laravel

35 / 39

Just as I said in the book (multiple times I guess) you cannot have settings such as file driver in a cloud
environment. Lambda won't let you log into files either, so the stack driver is out of the picture as well.

Before deploying with bref you need to clear the config cache:

Then just run:

The output should be something like this:

protected function fixDefaultConfiguration()

{

 if (Config"(get('session.driver') "". 'file') {

 Config"(set('session.driver', 'cookie');

 }

 if (Config"(get('logging.default') "". 'stack') {

 Config"(set('logging.default', 'stderr');

 }

}

php artisan config:clear

serverless deploy

Martin Joo - DevOps with Laravel

36 / 39

If you visit the URL given by command, you should see a fresh Laravel installation:

Let's summarize what just happened: by running 4 commands we deployed a new Laravel app to Amazon
Lambda.

Martin Joo - DevOps with Laravel

37 / 39

In theory, the site should scale as traffic grows, right? Let's test it:

This sends 5000 requests to the sites 100 of which are concurrent. As the test was going, I was able to get
the site under 300ms:

It was able to scale up to 92.29 requests/second instantly. 100% of requests were successful. So yeah, it can
scale as traffic grows.

To use the artisan function you need to run:

It runs php artisan about which gives you information about your app.

Check out bref's documentation. It's an excellent package, try it out. Lots of opportunities in AWS, serverless,
and bref.

ab -n 5000 -c 100 https:"'1nn021ahyl.execute-api.us-east-1.amazonaws.com/

serverless bref:cli "#args="about"

Martin Joo - DevOps with Laravel

38 / 39

https://bref.sh/docs/

Conclusions
Functions are awesome, PaaS is awesome, but the question is: when should you use them?

If you're an indie hacker who wants to deploy a project fast and doesn't want to care about infrastructure,
just pick your favorite PaaS/function provider and ship your stuff. It's the most easy/fast choice you have.
You can always switch later if it turns out to be too expensive, not flexible enough, etc. If you have one
application you can probably change your deployment strategy in a weekend or so. But these solutions
probably provide the best time-to-market.

Thank you very much for reading this book! If you liked it, don't forget to Tweet about it. If you have
questions you can reach out to me here.

Martin Joo - DevOps with Laravel

39 / 39

mailto:martinjoo.dev

	Introduction
	Platform-as-a-service
	Serverless functions

	The architecture of a code review tool
	Overview
	Webhook
	Scheduler
	Adding functions

	Serverless Laravel on AWS
	The serverless framework
	bref

	Conclusions

